Lecture 1

Introduction to C++ Programming
1.1 A Simple Program: Printing a Line of Text
We begin by considering a simple program that prints a line of text.

1) // Fig. 1.1: fig01_01.cpp
2) // A first program in C++
3) #include <iostream>
4)
5) int main()
6) {
7) std::cout << "Welcome to C++!\n";
8)
9) return 0; // indicate that program ended successfully
10) }
This program illustrates several important features of the C++ language. We consider each line of the program in detail. Lines 1 and 2
 // Fig. 1.1: fig01_01.cpp
 // A first program in C++

each begin with // indicating that the remainder of each line is a comment. Programmers insert comments to document programs and improve program readability. C++ supports two kinds of comments. The first one uses the pairs of characters /* and */ to define the comment's range. This range can be confined within the same line, or it can span several lines. The second kind of comments in C++ uses the // character pair to mark the beginning of a comment that strictly runs to the end of the same line.

Line 3
#include <iostream>

is a preprocessor directive, i.e., a message to the C++ preprocessor. Lines beginning with # are processed by the preprocessor before the program is compiled. This specific line tells the preprocessor to include in the program the contents of the input/output stream header file <iostream>. This file must be included for any program that outputs data to the screen or inputs data from the keyboard using C++-style stream input/output.
 Line 5
 int main()

is a part of every C++ program. The parentheses after main indicate that main is a program building block called a function. C++ programs contain one or more functions, exactly one of which must be main. C++ programs begin executing at function main, even if main is not the first function in the program. The keyword int to the left of main indicates that main “returns” an integer (whole number) value.
The left brace,{, (line 6) must begin the body of every function. A corresponding right brace,}, (line 10) must end the body of each function.
Line 7

 std::cout << "Welcome to C++!\n";

instructs the computer to print on the screen the string of characters contained between the quotation marks. The entire line, including std::cout, the << operator, the string "Welcome to C++!\n" and the semicolon (;), is called a statement. Every statement must end with a semicolon (also known as the statement terminator). Output and input in C++ is accomplished with streams of characters. Thus, when the preceding statement is executed, it sends the stream of characters Welcome to C++! to the standard output stream object--std::cout--which is normally “connected” to the screen.

Notice that we placed std:: before cout. This is required when we use the preprocessor directive #include <iostream>. The notation std::cout specifies that we are using a name, in this case cout, that belongs to “namespace” std. Namespaces are an advanced C++ feature

The operator << is referred to as the stream insertion operator. When this program executes, the value to the right of the operator, the right operand, is inserted in the output stream. The characters of the right operand normally print exactly as they appear between the double quotes. Notice, however, that the characters \n are not printed on the screen. The backslash (\) is called an escape character. It indicates that a “special” character is to be output. When a backslash is encountered in a string of characters, the next character is combined with the backslash to form an escape sequence. The escape sequence \n means newline. It causes the cursor (i.e., the current screen position indicator) to move to the beginning of the next line on the screen. Some other common escape sequences are listed below.
Escape
Sequence
Description

\n
Newline.
Position the screen cursor to the beginning of the next line.

\t
Horizontal tab.
Move the screen cursor to the next tab stop.

\r Carriage return.
Position the screen cursor to the beginning of the current line; do not advance to the next line.

\a
Alert.

Sound the system bell.

\\
Backslash.
Used to print a backslash character.

\"
Double quote.
Used to print a double quote character.

Welcome to C++! can be printed several ways. For example:

std::cout << "Welcome \n to\n \n C++!\n";
std::cout << "Welcome"<<" to"<<" C++!\n";

 Line 9

 return 0; // indicate that program ended successfully

is included at the end of every main function. C++ keyword return is one of several means we will use to exit a function. When the return statement is used at the end of main as shown here, the value 0 indicates that the program has terminated successfully

1.2 Naming Items in C++

When naming items in C++, you need to observe the following rules:

· The first character of a name must be a letter or an underscore (_).

· Subsequent characters may be underscores, letters, or digits.

· Identifiers in C++ are case-sensitive. For example, the names volume, VOLUME, VOLume, and Volume are four different identifiers.

· You cannot use reserved words, such as int, double, or static, as identifiers.

Here are examples of valid identifiers:

y

x

myString

HOURS_PER_DAY

HexNumber1

hex_number_1

hex1Number3

_Length

length

1.3 Declaring Variables

C++ requires that you declare variables before you use them. Typically, you declare variables at the beginning of a function's body. The general syntax for declaring a variable is:

// form 1

type variableName;

// form 2

type variableName = initialValue;

The first form allows you to declare an uninitialized variable by specifying first its data type and then its name. The second form allows you to declare and initialize a variable in one statement. This feature allows you to reduce the number of statements in your source code. Here are examples of declaring variables:

int nCount;

double fSum = 0.0;
The first example declares the int-type variable named nCount. The second example declares the double-type variable fSum and initializes this variable with the value 0.

C++ allows you to declare multiple variables in the same statement. You can even initialize some or all of the declared variables. Here are a few examples:

int i, j, k;

unsigned int uIndex, uCount = 0;

double fSum = 0.0, fSumX = 0.0, fSumXSqr = 0;

The first example declares the uninitialized int-type variables i, j, and k. The second example declares the unsigned-type variables uIndex and uCount, initializing the variable uCount. The third example declares the double-type variables fSum, fSumX, and fSumXSqr and initializes each variable to 0.
Let's look at a simple C++ program that declares and initializes variables. Figure 1-2 shows the source code for this program, which declares simple variables. The program requires no input from you. Instead it displays the following three characters:

!

#

#

Figure 1-2 declares the char-type variables cChar1, cChar2, and cChar3. The declaration of variable cChar1 does not include initialization. The function main assigns the character literal ‘!’ to variable cChar1. By contrast, the function main declares the variable cChar2 and initializes it with the character literal ‘#’. As for the variable cChar3, the function main declares it and initializes it using the value in variable cChar2. The output of the program confirms that variables cChar2 and cChar3 store the ‘#’ character.

1.4 Predefined Data Types

Typically, programming languages offer predefined data types to manage fundamental kinds of data, such as characters, integers, floating-point numbers, and strings. Such data types represent the building blocks for user-defined data types.

Table 1-1 shows the predefined data types in C++. Your particular compiler may support additional types. Notice that some of the examples in Table 1-1 show numbers that start with the characters 0x. This is how hexadecimal numbers are represented in C++. For example, the decimal integers 1241 and the hexadecimal integer 0xf1 are equivalent.

Table 1-1: Predefined Data Types in C++

	Data Type
	Byte Size
	Range
	Examples

	bool
	1
	false and true
	false, true

	char
	1
	–128 to 127
	'A','@'

	signed char
	1
	–128 to 127
	23

	unsigned char
	1
	0 to 255
	250,0x1c

	int (16-bit)
	2
	–32768 to 32767
	3200, –6000

	int (32-bit)
	4
	-2147483648 to 2147483647
	–1000000, 345678

	unsigned int (16 bit)
	2
	0 to 56635
	0x00aa, 32769

	unsigned int (32-bit)
	4
	0 to 4294967295
	0xffea, 65535

	short int
	2
	–32768 to 32767
	234

	unsigned short int
	2
	0 to 65535
	0x1e, 52000

	long int
	4
	–2147483648 to 2147483647
	0xaffaf, –64323

	unsigned long int
	4
	0 to 4294967295
	167556

	float
	4
	3.4E–38 to 3.4E+38 and –3.4E–38 to –3.4E+38
	–15.443, 22.35, 2.45e+24

	double
	8
	1.7E–308 to 1.7E+308 and –1.7E–308 to –1.7E+308
	–2.5e+100, –78.32544

	long double
	10
	3.4E–4932 to 1.1E+4932 and –1.1E–4932 to –3.4E+4932
	8.5e–3000, –9.345e+2341

The data types in Table 1-1 include such keywords as short, long, and unsigned, which are really type modifiers. For the sake of shortening type names, however, some of these type modifiers have become synonymous with the fuller versions of the data type names. For example, the types long, short, and unsigned are equivalent to long int, short int, and unsigned int, respectively.
1.5 The #include Directive

In order for a programming language to perform sophisticated tasks (especially those required by operating systems, complex programs, and mission-critical applications), the source code must be able to incorporate special directives to the compiler. These directives guide and fine-tune the actions of the compiler.

The first, and perhaps most widely used, compiler directive you'll come across is #include. This directive instructs the compiler to read a source code file and treat it as though you had typed its contents where the directive appears. The general syntax for the #include directive is:

// form 1

#include <filename>

// form 2

#include "filename"

The first identifier filename represents the name of the file to be included. The two forms of #include vary in how they lead a program to conduct searches for the include file. The first form searches for the file in the special directory for include files. The second form expands the search to incorporate the current directory.

Here are examples of using the #include directive:

#include <iostream.h>

#include "myarray.hpp"

The first example includes the header file IOSTREAM.H by searching for it in the directory of include files. The second example includes the header file MYARRAY.HPP by searching for it in the directory of include files as well as in the current directory.

1.6 The #define Directive

The #define directive defines macros. C++ has inherited this directive from C for the sake of software compatibility. The general syntax for the #define directive is:

// form 1

#define identifierName

// form 2

#define identifierName literalValue

// form 3

#define identifierName(parameterList) expression

The first form of the #define directive is typically used to indicate that a file has been read or to flag a certain software state. In this case, the #define directive need not associate a value with the identifierName. The main point for such use is to determine whether or not an identifier has been defined. Here are examples of using the #define directive to define state-related identifiers:

#define _IOSTREAM_H_

#define _DEFINES_MINMAX_

These examples define the identifiers _IOSTREAM_H_ and _DEFINES_MINMAX_. The first example may indicate that the file IOSTREAM.H has been read. The second example might, for example, flag the compiler to define or not define certain functions. Using uppercase identifiers is a common convention and is not enforced by the compiler. If so, the fact may be worth noting.

The second form of the #define directive defines the names of constants and associates literal values (numbers, characters, strings, and so on) with these name. The preprocessor (which automatically runs before the compiler) replaces the name of the defined identifier with its associated value. Here are examples of using the #define directive to declare constants:

#define MAX 100

#define ARRAY_SIZE 20

#define MINUTE_PER_HOUR 60

These examples define the constants MAX, ARRAY_SIZE, and MINUTE_PER_HOUR and associate the values 100, 20, and 60 with these constants, respectively.

The third form of the #define directive defines pseudo-inline functions. In this way, the directive can create macros with arguments. The preprocessor replaces the name of the defined identifier and its arguments with the associated expression. Here are a few examples:
#define Square(x) ((x) * (x))

#define Reciprocal(x) (1/(x))

#define Lowercase(c) (char(tolower(c))

#define Uppercase(c) (char(toupper(c))

These examples define the pseudo-inline functions Square, Reciprocal, Lowercase, and Uppercase.

1.7 The #undef Directive

The #undef directive counteracts the #define directive by removing the definition of an identifier. The general syntax for the #undef directive is:

#undef identifierName

Here is an example of using the #undef directive:

#define ARRAY_SIZE 100

int nArray[ARRAY_SIZE];

#undef ARRAY_SIZE

This code snippet performs the following tasks:

· Define the identifier ARRAY_SIZE with the #define directive

· Use the identifier ARRAY_SIZE to define the number of elements of array nArray

· Undefine identifier ARRAY_SIZE using the #undef directive

You need not use the directive #undef to undefine an identifier before redefining it with another #define directive. Simply use the second #define directive to redefine an identifier. The following code snippet demonstrates this idea:

// first definition of ARRAY_SIZE

#define ARRAY_SIZE 100

int nArray1[ARRAY_SIZE];

#undef ARRAY_SIZE

// second definition of ARRAY_SIZE

#define ARRAY_SIZE 10

int nArray2[ARRAY_SIZE];

These statements define, use, undefine, redefine, and then reuse the identifier ARRAY_SIZE. The next code snippet, however, which lacks the #undef directive, yields the same array declarations as the earlier one:

// first definition of ARRAY_SIZE

#define ARRAY_SIZE 100

int nArray1[ARRAY_SIZE];

// second definition of ARRAY_SIZE

#define ARRAY_SIZE 10

int nArray2[ARRAY_SIZE];

1.8 Declaring Constants

C++ allows you to declare constants either using the #define directive or using the formal constant syntax. The general syntax for declaring a formal constant is:

const type constantName = constantValue;

The declaration of a constant resembles the declaration of an initialized variable. Declaring a constant requires the keyword const. If you omit the constant's type, the compiler uses the int data type.

Here are examples of constants:

const int MAX_NUM = 1000;

const int MIN_NUM = 1;

const SEC_PER_MINUTE = 60;

const char FIRST_DRIVE = 'A';

const double MIN_RATE = 0.023;

The first two examples declare the constants MAX_NUM and MIN_NUM and explicitly associate the int type with these constants. By contrast, the third example, which contains the declaration of constant SEC_PER_MINUTE, has the int type by omission. The fourth and fifth examples declare constants that have the types char and double, respectively. Using uppercase with these constants is a common convention and is not enforced by the compiler.
Let's look at a simple example. Figure 1-3 shows the source code for the program CONST1.CPP, which illustrates C++ constants. The program declares a character constant and uses that constant to initialize a char-type variable. The program also displays the values associated with the constant and the variable. Here is the output of the program in Figure 1-3:

Character variable is ?

Character constant is ?

Figure 1-3 declares the char-type constant QUESTION_MARK. This constant is associated with the question mark character. The listing also declares the char-type variable cChar and initializes it using the constant QUESTION_MARK. The program then displays the values in both the constant QUESTION_MARK and the variable cChar.

1.9 Arithmetic operators

Arithmetic operators support the manipulation of integers and floating-point numbers. Table 1-2 shows the arithmetic operators in C++.

Table 1-2: The Arithmetic Operators in C++

	C++ Operator
	Role
	Data Type
	Example

	+
	unary plus
	numerical
	z = +h – 2

	-
	unary minus
	numerical
	z = –1 * (z+1)

	+
	add
	numerical
	h = 34 + g

	-
	subtract
	numerical
	z = 3.4 – t

	/
	divide
	numerical
	d = m / v

	*
	multiply
	numerical
	area = len * wd

	%
	modulus
	integers
	count = w % 12

Let's look at a program that applies the arithmetic operators to variables having the integer and floating-point types. Figure 1-4 shows the source code for the OPER1.CPP program, which illustrates the arithmetic operators. The program performs the following tasks:

1. Prompt you to enter two nonzero integers

2. Apply the operators +, -, *, /, and % to your input

3. Display the integer operands and the results of the operations just described

4. Prompt you to enter two nonzero floating-point numbers

5. Apply the operators +, -, *, and / to your input

6. Display the floating-point operands and the results of the operations just described

Here is the input and output of a sample session with the program in Figure 1-4:

Enter a nonzero integer : 342

Enter another nonzero integer : 23

342 + 23 = 365

342 - 23 = 319

342 * 23 = 7866

342 / 23 = 14

342 % 23 = 20

Enter a nonzero floating-point number : 4.56

Enter another nonzero floating-point number : 12.34

4.56 + 12.34 = 16.9

4.56 - 12.34 = -7.78

4.56 * 12.34 = 56.2704

4.56 / 12.34 = 0.36953

Figure 1-4 declares three sets of variables in function main. The first set comprises the int-type variables nNUm1 and nNum2. The second set of variables is made up of the long-type variables lAdd, lSub, lMul, lDiv, and lMod. The third set of variables includes the double-type variables fX, fY, fAdd, fSub, fMul, and fDiv.
The function main prompts you to enter two integers, which it then stores in variables nNum1 and nNum2. The function then uses the values in these variables as the operands of the tested operators. It assigns the results of the integer operations to the long-type variables. I chose to use long-type variables (which have a wider range of values than int-type variables) to store the results of the operations in order to fend off possible arithmetic overflow, especially with the +, -, and * operators. The function main then displays the integer operands and results.

As for applying the arithmetic operators to the floating-point numbers, function main also prompts you to enter two numbers. The function stores your input in variables fX and fY. It then uses the values in these variables as the operands of the tested operators. It assigns the results of the floating-point operations to the double-type variables fAdd, fSub, fMul, and fDiv. The function main then displays the floating-point operands and results.

C++ supports more complicated expressions that implement more advanced mathematical equations. For example, you can write expressions such as:

fZ = (((3 + 2 * fX) * fX - 5) * fX - 3) * fX - 20;

fH = (2 + fX + fY) * (34.2 - fX) / (fX * fX + fY * fY);

fD = (11 + (22 + fX) * (56 - fY)) / (fX * fX + fY * fY);

Table 1.3 Precedence of arithmetic operators.

	Operator(s)
	Operation(s)
	Order of evaluation (precedence)

	()
	Parentheses
	Evaluated first. If the parentheses are nested, the expression in the innermost pair is evaluated first. If there are several pairs of parentheses “on the same level” (i.e., not nested), they are evaluated left to right.

	* , / , or %
	Multiplication Division
Modulus
	Evaluated second. If there are several, they are evaluated left to right.

	+ or -
	Addition Subtraction
	Evaluated last. If there are several, they are evaluated left to right.

Example 1:

State the order of evaluation of the operators in each of the following C++ statements and show the value of x after each statement is performed.

a) x = 2*(1+3)+3/(5-4);

b) x = (3 * 9 * (3 + (9 * 3 / (3))));
Example 2:

If a=2, b=3, c=1, d=4, e=5
Write a single C++ statement for each of the following expressions. State the order of evaluation and show the value of x after each statement is performed.

1) X= 2a+2b

 3c

2) X= 5c+2+b

 a+b

3) X= 2d + c+e

 a b
1.10 Increment Operators

C++ offers the increment operators ++ and -- to support a shorthand syntax for adding or subtracting 1 from the value in a variable, respectively. The general syntax for the operator ++ is:

// form 1: preincrement

++variableName

// form 2: postincrement

variableName++

The preincrement version of the operator ++ increments the value in its operand variableName before that variable supplies its value to the host expression. By contrast, the postincrement version increments the value in its operand variableName after that variable supplies its value to the host expression. If you use the increment operator in a statement that has no other operators (not even an assignment operator), then it makes no difference which form of the operator you use. Thus, these two statements have the same effect:

nCount++;

++nCount;

Here are examples of using the increment operator:

int nCount = 1;

int nNum;

nNum = nCount++; // nNum stores 1 and nCount stores 2

nNum = ++nCount; // nNum stores 3 and nCount stores 3

In this code snippet the variable nCount has the initial value of 1. The first statement that uses the increment operator employs the postincrement version. Consequently, the statement assigns the value in variable nCount to variable nNum and then increments the value in variable nCount. The result is that variable nNum stores 1 and variable nCount contains 2. The second statement that uses the increment operator employs the preincrement version. Consequently, the statement first increments the value in variable nCount and then assigns the value in variable nCount to variable nNum. The result is that both variables nNum and nCount store 3.

As for the decrement operator, the general syntax for this operator is:

// form 1: pre-decrement

--variableName

// form 2: post-decrement

variableName--

The predecrement version of the operator -- decrements the value in its operand variableName before that variable supplies its value to the host expression. By contrast, the postdecrement version of the same operator decrements the value in its operand after that variable supplies its value to the host expression. If you use the decrement operator in a statement that has no other operators (including the assignment operator), then it makes no difference which form of the operator you use. Thus, the following two statements have the same effect:

nCount--;

--nCount;

Here are examples of using the decrement operator:

int nCount = 10;

int nNum;

nNum = nCount--; // nNum stores 10 and nCount stores 9

nNum = --nCount; // nNum stores 8 and nCount stores 8

In this code snippet the variable nCount has the initial value of 10. The first statement that uses the decrement operator employs the postdecrement version. Consequently, the statement assigns the value in variable nCount to variable nNum and then decrements the value in variable nCount. The result is that variable nNum stores 10 and variable nCount contains 9. The second statement that uses the decrement operator employs the predecrement version. Consequently, the statement first decrements the value in variable nCount and then assigns the value in variable nCount to variable nNum. The result is that both variables nNum and nCount store 8.
Suppose j = 10;
	Expression
	Evaluated As
	Result

	j * j * j++
	10 * 10 * 10
	1000

	j * j++ * j
	10 * 10 * 10
	1000

	j++ * j * j
	10 * 10 * 10
	1000

	j * j * ++j
	10 * 10 * 11
	1100

	j * ++j * j
	11 * 11 * 11
	1331

	++j * j * j
	11 * 11 * 11
	1331

1.11 Assignment Operators

If you have programmed in BASIC, Pascal, or another structured programming languages, then you have probably written expressions such as these:

sum = sum + x;

diff = diff - x;

scale = scale / factor;

factorial = factorial * x;
Each statement contains the same variable on both sides of the assignment operator. C++ supports assignment operators that combine arithmetic and bitwise operations with the assignment operator. Thus you can write the preceding statements as:

sum += x;

diff -= x;

scale /= factor;

factorial *= x;
Table 1-4 lists the arithmetic assignment operators in C++. The table also contains examples of using these operators, in addition to the long-form versions of the statements in the examples.
Table 1-4: The Arithmetic Assignment Operators in C++

	C++ Operator
	Example
	Long-Form Example

	+=
	fSum += fX;
	fSum = fSum + fX;

	–=
	fY –= fX;
	fY = fY – fX;

	/=
	nCount /= N;
	nCount = nCount / N;

	*=
	fScl *= fFcator;
	fScl = fScl * fFactor;

	%=
	nBins %= nCount;
	nBins = nBins % nCount;

1.12 Typecasting

C++ supports the typecasting feature (inherited from C) to allow you to explicitly convert a value from one data type into another type. The general syntax for typecasting is:

// form 1

(newType)expression

// form 2

newType(expression)

Here are examples of using the typecasting feature:

char cLetter = 'A'

int nASCII = int(cLetter);

long lASCII = (long)cLetter;

This code snippet declares and initializes the char-type variable cLetter. The code also declares the int-type variable nASCII and initializes it using the int typecast of variable cLetter. In addition, the code declares the long-type variable lASCII and initializes it using the long typecast of variable cLetter.
static_cast

Cast operators are available for any data type. The static_cast operator is formed by following keyword static_cast with angle brackets (< and >) around a data type name. The cast operator is a unary operator, i.e., an operator that takes only one operand. Here’s a statement that uses a C++ cast to change a variable of type int into a variable of type char:

aCharVar = static_cast<char>(anIntVar);

Here the variable to be cast (anIntVar) is placed in parentheses and the type it’s to be changed to (char) is placed in angle brackets. The result is that anIntVar is changed to type char before it’s assigned to aCharVar.

1.13 The #ifdef and #ifndef Directives
The #ifdef and #ifndef directives determine if an identifier is currently defined or not currently defined, respectively. The general syntax for the #ifdef directive is:

// form 1

#ifdef identifierName

 // statements

#endif

// form 2

#ifdef identifierName

 // statements set #1

#else

 // statements set #2

#endif

The #ifdef directive yields true (a nonzero value) if identifierName is currently defined and yields false (0) if it is not. In form 1 of the directive’s syntax, if the directive returns true, the compiler processes the statements between the #ifdef and #endif directives. In form 2, the compiler processes the first set of statements if the #ifdef directive returns true or the second set of statements if the directive returns false.

The general syntax for the #ifndef directive is:

#ifndef identifierName

 // statements

#endif

// form 2

#ifndef identifierName

 // statements set #1

#else

 // statements set #2

#endif

The #ifndef directive works in a manner opposite the #ifdef directive.

 Questions
(SAMS - Object-Oriented Programming in C++ Book-chapter 2)
2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23.

2. A function name must be followed by ________.

3. A function body is delimited by ________.

4. Why is the main() function special?

5. A C++ instruction that tells the computer to do something is called a ________.

6. Write an example of a normal C++ comment and an example of an old-fashioned /* comment.

9. True or false: A variable of type char can hold the value 301.

10. What kind of program elements are the following?

a. 12

b. ‘a’

c. 4.28915

d. JungleJim

e. JungleJim()

11. Write statements that display on the screen

a. the character ‘x’

b. the name jim

c. the number 509

12. True or false: In an assignment statement, the value on the left of the equal sign is always equal to the value on the right.

14. What header file must you #include with your source file to use cout and cin?

15. Write a statement that gets a numerical value from the keyboard and places it in the variable temp.
17. Two exceptions to the rule that the compiler ignores whitespace are ________ and ________.

18. True or false: It’s perfectly all right to use variables of different data types in the same arithmetic expression.

19. The expression 11%3 evaluates to ________.

20. An arithmetic assignment operator combines the effect of what two operators?

21. Write a statement that uses an arithmetic assignment operator to increase the value of the variable temp by 23. Write the same statement without the arithmetic assignment operator.

22. The increment operator increases the value of a variable by how much?

23. Assuming var1 starts with the value 20, what will the following code fragment print out?

cout << var1--;

cout << ++var1;

Exercises
1. Write a single C++ statement or line that accomplishes each of the following:
 a) Print the message "Enter two numbers".
 b) Assign the product of variables b and c to variable a.
 c) State that a program performs a sample payroll calculation (i.e., use text that helps to document a program).
d) Input three integer values from the keyboard and into integer variables a, b and c.
2. State which of the following are true and which are false. If false, explain your answers.
 a) C++ operators are evaluated from left to right.
b) The following are all valid variable names: _under_bar_, m928134, t5, j7, her_sales, his_account_total, a, b, c, z, z2.
c) The statement cout << "a = 5;"; is a typical example of an assignment statement.
d) A valid C++ arithmetic expression with no parentheses is evaluated from left to right.

 e) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.
3. Fill in the blanks in each of the following:

a) What arithmetic operations are on the same level of precedence as multiplication?__________.
 b) When parentheses are nested, which set of parentheses is evaluated first in an arithmetic expression?__________.
 c) A location in the computer's memory that may contain different values at various times throughout the execution of a program is called a__________.
4. What, if anything, prints when each of the following C++ statements is performed? If nothing prints, then answer “nothing.” Assume x = 2 and y = 3.
 a) cout << x;
 b) cout << x + x;
 c) cout << "x=";
 d) cout << "x = " << x;
 e) cout << x + y << " = " << y + x;
 f) z = x + y;
 g) cin >> x >> y;
 h) // cout << "x + y = " << x + y;
 i) cout << "\n";
5. Which of the following C++ statements contain variables whose values are replaced?
 a) cin >> b >> c >> d >> e >> f;
 b) p = i + j + k + 7;
 c) cout << "variables whose values are replaced";
 d) cout << "a = 5";
6. Given the algebraic equation y = ax3 + 7, which of the following, if any, are correct C++ statements for this equation?
 a) y = a * x * x * x + 7;
 b) y = a * x * x * (x + 7);
 c) y = (a * x) * x * (x + 7);
 d) y = (a * x) * x * x + 7;
 e) y = a * (x * x * x) + 7;
 f) y = a * x * (x * x + 7);
7. State the order of evaluation of the operators in each of the following C++ statements and show the value of x after each statement is performed.
a) x = 7 + 3 * 6 / 2 - 1;
b) x = 2 % 2 + 2 * 2 - 2 / 2;
c) x = (3 * 9 * (3 + (9 * 3 / (3))));
8. Write a program that asks the user to enter two numbers, obtains the two numbers from the user and prints the sum, product, difference, and quotient of the two numbers.
9.Write a program that prints the numbers 1 to 4 on the same line with each pair of adjacent numbers separated by one space. Write the program using the following methods:
a) Using one output statement with one stream insertion operator.
b) Using one output statement with four stream insertion operators.
c) Using four output statements.
10. Write a program that reads in the radius of a circle and prints the circle’s diameter, circumference and area. Use the constant value 3.14159 for π . Do these calculations in output statements.
11. What does the following code print?
 cout << "*\n**\n***\n****\n*****\n";
#include <iostream.h>

main()

{

 char cChar1;

 char cChar2 = '#';

 char cChar3 = cChar2;

 cChar1 = '!';

 cout << cChar1 << "\n"

 << cChar2 << "\n"

 << cChar3 << "\n";

 return 0;

}

Figure 1-2

// A C++ program that illustrates declaring constants

#include <iostream.h>

main()

{

 const char QUESTION_MARK = '?';

 char cChar = QUESTION_MARK;

 cout << "Character variable is " << cChar << "\n"

 << "Character constant is " << QUESTION_MARK << "\n";

 return 0;

}

Figure 1-3: declaring constants

Figure 1-4: arithmetic operations

#include <iostream.h>

main()

{

 int nNum1, nNum2;

 long lAdd, lSub, lMul, lDiv, lMod;

 double fX, fY;

 double fAdd, fSub, fMul, fDiv;

 // prompt for two integers

 cout << "Enter a nonzero integer : ";

 cin >> nNum1;

 cout << "Enter another nonzero integer : ";

 cin >> nNum2;

 cout << "\n";

 // apply arithmetic operators

 lAdd = nNum1 + nNum2;

 lSub = nNum1 - nNum2;

 lMul = nNum1 * nNum2;

 lDiv = nNum1 / nNum2;

 lMod = nNum1 % nNum2;

 // display operands and results

 cout << nNum1 << " + " << nNum2 << " = " << lAdd << "\n";

 cout << nNum1 << " - " << nNum2 << " = " << lSub << "\n";

 cout << nNum1 << " * " << nNum2 << " = " << lMul << "\n";

 cout << nNum1 << " / " << nNum2 << " = " << lDiv << "\n";

 cout << nNum1 << " % " << nNum2 << " = " << lMod << "\n";

 cout << "\n";

 // prompt for two floating-point numbers

 cout << "Enter a nonzero floating-point number : ";

 cin >> fX;

 cout << "Enter another nonzero floating-point number : ";

 cin >> fY;

 cout << "\n";

 // apply arithmetic operators

 fAdd = fX + fY;

 fSub = fX - fY;

 fMul = fX * fY;

 fDiv = fX / fY;

 // display operands and results

 cout << fX << " + " << fY << " = " << fAdd << "\n";

 cout << fX << " - " << fY << " = " << fSub << "\n";

 cout << fX << " * " << fY << " = " << fMul << "\n";

 cout << fX << " / " << fY << " = " << fDiv << "\n";

 return 0;

}

// cast.cpp

// tests signed and unsigned integers

#include <iostream>

using namespace std;

int main()

{

int intVar = 1500000000; //1,500,000,000

intVar = (intVar * 10) / 10; //result too large

cout << "intVar = " << intVar << endl; //wrong answer

intVar = 1500000000; //cast to double

intVar = (static_cast<double>(intVar) * 10) / 10;

cout << "intVar = " << intVar << endl; //right answer

return 0;

}

PAGE
26

